PRECISION INDIVIDUALIZED MEDICINE

ΠΛΗΡΟΦΟΡΙΕΣ

Εξεταζόμενος:		Ημ. Συλλογής Δείγμ.:	
AMKA:		Παραπέμπων:	
Ημερ. Γέννησης:		Report No:	
Τύπος Δείγμ. #1:	ΠΛΑΣΜΑ	Ημερ. Παρ. Δειγμ.:	
Τύπος Δείγμ. #2:		Ημερ. Αποτελ.:	
Κωδικός Δείγμ. #1		Τύπος όγκου: ΚΑΡΚΙΝΟΣ ΠΡΟΣΤΑΤΗ	
1			

primeDX

1. Περίληψη έκθεσης αποτελέσματος

1021	Γονίδια (38 αναδιατάξεις) αναλύθηκαν	1	Κλινικά σημαντικές γενωμικές αλλοιώσεις που ανιχνεύθηκαν
3	Εγκεκριμένες θεραπείες που σχετίζονται με Βιοδείκτες για την ένδειξη	1	Θεραπείες με πιθανό όφελος που σχετίζονται με Βιοδείκτες
0	Θεραπείες με πιθανή αντίσταση που σχετίζονται με Βιοδείκτες	15	Κλινικές μελέτες που σχετίζονται με Βιοδείκτες

2. Βιοδείκτες με κλινική σημασία*

Βιοδείκτης	Αποτέλεσμα	Εγκεκριμένες θεραπείες για την ένδειξη	Θεραπείες με πιθανό όφελος	Θεραπείες με πιθανή αντίσταση/τοξικότητα	Κλινικές μελέτες
BRCA2	Exon 11 c.6141delT (p.Tyr2047Ter)	Olaparib (1A.1) Rucaparib (1A.1) Talazoparib+Enzalutamide (1A.1)	Niraparib (2C.1)	-	ναι
Μικροδορυφορική Αστάθεια (MSI)	χωρίς μικροδορυφορική αστάθεια (MSS)	-	-	-	-
Συνολικό Φορτίο Μεταλλαγών του όγκου (TMB)	1.88 Muts/MB	-	-	-	-

*Σημείωση: Το επίπεδο σημαντικότητας των παραλλαγών (Level of Evidence, LoE) (π.χ. 1Α.1, 2C.1, 1Β κλπ) βασίζονται στις οδηγίες για την αναφορά γενετικών παραλλαγών στον καρκίνο που δόθηκαν με κοινή συναίνεση των AMP, ACMG, ASCO και CAP. Για λεπτομερή περιγραφή των οδηγιών αυτών, ανατρέξτε στην Εικόνα 1.

Biomarker related Clinical Trials

Name:	-		Rep	port No: -			
SAMPL	E INFORMATION						
Name:		Date S	бр. Ex	xtracted:			
Medica	al ID:	Req. P	hysic	cian:			
Date O	f Birth:	Report	t No:	:			
Materi	Material #1: PLASMA			Date Received:			
Materi	al #2:	Date Of Report:					
Sample	e #1 ID:	Tumor	r type	PROSTATE CANCER			
prime	X						
1. Repo	ort Summary						
1021	Unique Genes (38 Fusions) analyzed		1	Clinically significant biomarkers identified			
3	Biomarker related approved therapies for indication		1	Biomarker related therapies with potential benefit			

0 Biomarker related therapies with potential resistance

2. Clinically Significant Biomarkers*

Biomarker	Result	Approved therapies for indication	Therapies with potential benefit	Therapies with potential resistance/toxicity	Clinical Trials
BRCA2	Exon 11 c.6141delT (p.Tyr2047Ter)	Olaparib (1A.1) Rucaparib (1A.1) Talazoparib+Enzalutamide (1A.1)	Niraparib (2C.1)	-	yes
Microsatellite Instability (MSI)	Stable (MSS)	-	-	-	-
Tumor Mutational Burden (TMB)	1.88 Muts/MB	-	-	-	-

15

*Note: Variants' Level of Evidence (LoE) (e.g. 1A.1, 2C.1, 1B etc) are based on the Joint consensus recommendation of AMP, ACMG, ASCO and CAP for reporting genetic variants in cancer. For a detailed description of the recommendation please refer to Fig. 1

Name

Report No:

- 1. <u>Report Summary</u>
- 2. Clinically Significant Biomarkers
- 3. Important biomarkers findings
- 4. Immune Checkpoint inhibitors biomarkers
- 5. Interpretations for targeted therapies
- 6. Interpretation for polymorphism variants related with chemotherapy drugs
- 7. Other Genomic findings
- 8. Variants of Uncertain Significance (VUS)
- 9. Suspected Germline variants
- 10. HLA-I Polymorphism variation
- 11. Clinical Trials to consider
- 12. Appendix
 - a. Immune checkpoint inhibitors predictive biomarkers
 - b. <u>Methodology</u>
 - c. Quality Control Results
 - d. Genes analyzed
 - e. Levels of Evidence for Genomic Biomarkers
- 13. <u>References</u>

_

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

3. Important biomarkers findings

_

	1	
Gene	Detected Range	Finding
	Even 19	(VAF/COpy Number/Germine Mutation)
	Exoli 18	Not detected
EGFR		Not detected
	Exon 20 (including 1/90M)	Not detected
	Exon 21	Not detected
ERBB2(HER2)	Copy number gain	Not detected
	Mutation	Not detected
ESR1	Mutation	Not detected
ALK	Rearrangement	Not detected
ROS1	Rearrangement	Not detected
N/IET	Copy number gain	Not detected
	Exon 14 skipping	Not detected
RET	Rearrangement	Not detected
BRAF	Codon 600 mutation	Not detected
	Exon 9	Not detected
	Exon 11	Not detected
KII	Exon 13	Not detected
	Exon 17	Not detected
	Exon 12	Not detected
PDGFRA	Exon 18	Not detected
BRCA1	Mutation	Not detected
BRCA2	Mutation	c.6141delT (p.Tyr2047Ter)
	Codon 12/13/59/61/117/146 mutation	Not detected
KRAS	Other mutations except codon	Not detected
	12/13/59/61/117/146	
	Codon 12/13/59/61/117/146 mutation	Not detected
NRAS	Other mutations except codon	Not detected
	12/13/59/61/117/146	
PIK3CA	Mutation	Not detected
EGER2	Rearrangement	Not detected
101112	Mutation	Not detected
ECEP2	Rearrangement	Not detected
16/13	Mutation	Not detected
NTRK1	Rearrangement	Not detected
NTRK2	Rearrangement	Not detected
NTRK3	Rearrangement	Not detected
IDH1	Mutation	Not detected

Note:

1. 'Not detected/-' indicates the corresponding variations were not detected in this tested individual.

2. The genetic variations listed above are covered, but not limited to this list.

3. For a detailed information about listed variants, please refer to the Report Summary and the respective Interpretations sections.

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

_

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

4. Immune Checkpoint inhibitors biomarkers

_

	Biomarker/Variant	Result	Clinical Interpretation
		Biomarkers for predicting	efficacy
Tumor mutatio	on burden (TMB)	TMB-L 1.88	-
Microsatellite i	nstability (MSI)	Stable (MSS)	-
	Affect	the treatment effect - posi	itive correlation
PD-L1 amplifica	ation	Not detected	-
PBRM1 inactiv carcinoma)	vating mutation Renal clear cell	Not detected	-
MLH1 germline	e deleterious mutation	Not detected	-
MSH2 germline	e deleterious mutation	Not detected	-
MSH6 germline	e deleterious mutation	Not detected	-
PMS2 germline	e deleterious mutation	Not detected	-
POLE mutation	(driver)	Not detected	-
POLD1 mutatic	on (driver)	Not detected	-
	ATM mutation	Not detected	-
	ATR mutation	Not detected	-
	BAP1 mutation	Not detected	-
	BLM mutation	Not detected	-
	BRCA1 mutation	Not detected	-
	BRCA2 mutation	Not detected	-
	BRIP1 mutation	Not detected	-
	CHEK1 mutation	Not detected	-
	CHEK2 mutation	Not detected	-
damage	ERCC3 mutation	Not detected	-
repair (DDR)	ERCC4 mutation	Not detected	-
pathway	ERCC5 mutation	Not detected	-
genes	FANCA mutation	Not detected	-
	FANCC mutation	Not detected	-
	MRE11A mutation	Not detected	-
	NBN mutation	Not detected	-
	RAD50 mutation	Not detected	-
	RAD51 mutation	Not detected	-
	RAD51B mutation	Not detected	-
	RAD51D mutation	Not detected	-
	RAD54L mutation	Not detected	-
	TP53 mutation	Not detected	-

Electronically Signed by

- Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Page 6 of 30

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148

Scientific Director: George Nasioulas PhD

Name:

Report No:

KRAS mutation	Not detected	-					
Biomarker/Variant	Result	Clinical Interpretation					
Affect the treatment effect - negative correlation							
PTEN inactivating mutation	Not detected	-					
JAK1 inactivating mutation	Not detected	-					
JAK2 inactivating mutation	Not detected	-					
B2M inactivating mutation	Not detected	-					
EGFR mutation (L858R/EX19del)	Not detected	-					
ALK rearrangement	Not detected	-					
STK11 inactivating mutation	Not detected	-					
KEAP1 inactivating mutation	Not detected	-					
11q13 amplification	Not detected	-					
MDM2 amplification	Not detected	-					
MDM4 amplification	Not detected	-					
DNMT3A inactivating mutation	Not detected	-					
Indicator affecting prognosis of immune checkpoint inhibitor therapy							
HLA-I Zygosity (At least one of type A, B, C is homozygous)	Not detected	-					

Note:

- 1. Not detected/- indicates the corresponding variation were not detected in this tested individual.
- 2. The interpretation of the detection results of PBRM1 inactivating mutations is only applicable to renal clear cell carcinoma.
- 3. The indicators/gene clinical interpretations listed above are for reference only, and the specific decisions need to refer to professional physician instructions.
- 4. For a detailed interpretation, showed in Interpretation for biomarker of checkpoint inhibitor.
- 5. *POLE* and *POLD1* mutations are restricted to currently reported mutations that may lead to hypermutation in tumor, resulting in tumor mutation burden increase.
- HLA-I results analyzed by the phenotypes of HLA-A, HLA-B and HLA-C loci detected from tumor samples. Due to the lack of control samples, HLA-I typing cannot be accurately analyzed and it is possible that show homozygosity because of the occurrence of HLA-LOH in the tumor tissue.

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name

Report No:

5. Interpretations for targeted therapies							
Genetic Variation:	NM_ 000059.3 (BRCA2): c.6141delT (p.Tyr2047Ter)	/AF:49%	<u>OncoKB</u> Ø	<u>CIViC</u> Ø	<u>COSMIC</u> Ø		
Therapies:	Olaparib, Rucaparib, Talazoparib+Enzalutamide (1A.1), Niraparib (2C.1)						

Gene Description

BRCA2 (breast cancer susceptibility gene 2) is a tumor suppressor gene that functions as a DNA repair protein. BRCA2 has been implicated in regulating diverse cellular processes including transcription, cell cycle regulation, and DNA damage response, with a particularly important role in DNA repair during homologous recombination (PMID: 22193408). BRCA2 forms protein complexes with known tumor suppressors including RAD51, BRCA1, and PALB2; specifically, BRCA2 binds single-stranded DNA and loads RAD51 monomers at sites of DNA double-strand breaks (PMID: 28976962). RAD51 requires the BRCA1-BRCA2-PALB2 complex to initiate homologous recombination (PMID: 11239455). BRCA2 is a tumor suppressor protein; if one copy of the gene is inactivated in the germline, the result is hereditary breast and ovarian cancer (HBOC) syndrome, an autosomal dominant disease (PMID: 15800615). BRCA2 was also identified as a definitive Fanconi anemia susceptibility gene that results from biallelic mutations in the gene (PMID: 12065746). Germline BRCA2 mutations confer a 50-60% lifetime risk of breast cancer, a 30% lifetime risk of ovarian cancer, a 20-fold increased risk of prostate cancer, and a risk for the development of a broad range of cancers (PMID: 31343663).

Variant Description

This sequence change results in a premature translational stop signal in the BRCA2 gene. It is expected to result in an absent or disrupted protein product. (PMID: 20104584). This variant is not present in population databases (gnomAD no frequency). The mutation database ClinVar does not contain an entry for this variant. Loss-of-function variants in BRCA2 are known to be pathogenic. For these reasons, this variant is classified as pathogenic.

Targeted Drug Interpretation

FDA approved olaparib for adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC), who have progressed following prior treatment with enzalutamide or abiraterone. Efficacy was investigated in PROfound (NCT02987543), an open-label, multicenter trial. A statistically significant improvement was demonstrated for olaparib compared to investigator's choice in Cohort A for rPFS with a median of 7.4 months vs 3.6 months, for OS with a median of 19.1 months vs. 14.7 months and for ORR 33% vs 2%. A statistically significant improvement for olaparib compared to investigator's choice was also demonstrated for rPFS in Cohort A+B, with a median of 5.8 months vs. 3.5 months.

FDA approved olaparib with abiraterone and prednisone (or prednisolone) for adult patients with deleterious or suspected deleterious BRCA-mutated metastatic castration-resistant prostate cancer, as determined by an FDA-approved companion diagnostic test. Efficacy was evaluated in the PROpel trial that enrolled 796 patients with metastatic castration-resistant prostate cancer.

FDA granted accelerated approval to rucaparib for patients with deleterious BRCA mutation (germline and/or somatic)-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxanebased chemotherapy. Efficacy was investigated in TRITON2 (NCT02952534), an ongoing, multi-center, single arm clinical trial in 115 patients with BRCA-mutated (germline and/or somatic) mCRPC who had been treated with androgen receptor-directed therapy and taxane-based chemotherapy. Objective response rate (ORR) and duration of response (DOR) were assessed in 62 patients with measurable disease. The

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

PRECISION INDIVIDUALIZED MEDICINE

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

DrugBank Ø

Name:

Report No:

confirmed ORR was 44% (95% CI: 31, 57). Median DOR was not evaluable (NE; 95% CI: 6.4, NE). The range for the DOR was 1.7-24+ months. Fifteen of the 27 (56%) patients with confirmed objective responses had a DOR of \geq 6 months.

The FDA has received a new drug application for niraparib plus dual action abiraterone acetate tablets and prednisone for the treatment of patients with BRCA-positive metastatic castration-resistant prostate cancer (mCRPC) by data from the phase 3 MAGNITUDE study (NCT03748641), in which investigators evaluated the safety and efficacy of niraparib plus abiraterone for front-line mCRPC with or without homologous recombination repair (HRR) alterations. Furthermore, the FDA has granted priority review to a supplemental new drug application for the combination of talazoparib and enzalutamide for metastatic castration-resistant prostate cancer (mCRPC). The combination showed significantly improved radiographic progression-free survival (rPFS) compared to placebo and enzalutamide, according to positive results from the phase 3 TALAPRO-2 study.

Olaparib

Olaparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1, PARP2, and PARP3. PARP enzymes are involved in normal cellular homeostasis, such as DNA transcription, cell cycle regulation, and DNA repair. Olaparib has been shown to inhibit growth of select tumor cell lines in vitro and decrease tumor growth in mouse xenograft models of human cancer both as monotherapy or following platinum-based chemotherapy. Increased cytotoxicity and anti-tumor activity following treatment with olaparib were noted in cell lines and mouse tumor models with deficiencies in BRCA. In vitro studies have shown that olaparib-induced cytotoxicity may involve inhibition of PARP enzymatic activity and increased formation of PARP-DNA complex, resulting in disruption of cellular homeostasis and cell death. Olaparib is available as oral tablets marketed under the brand name Lynparza.

It is indicated for the following conditions:

Ovarian cancer

- For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy.
- In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD)-positive status defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability.
- For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.
- For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy.

Breast cancer

• For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, HER2-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Name:

Report No:

(HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Latest research supports the use of adjuvant olaparib in patients with high-risk early-stage HER2-negative breast cancer and germline BRCA mutations (PMID: 34081848).

Pancreatic cancer

• For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen.

Prostate cancer

For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous
recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have
progressed following prior treatment with enzalutamide or abiraterone.

Rucaparib

Rucaparib is a potent mammalian poly(ADP-ribose) polymerase (PARP) 1, 2 and 3 inhibitor with anticancer properties. PPAR is an enzyme that plays an essential role in DNA repair by activating response pathways and facilitating repair , and defects in these repair mechanisms have been demonstrated in various malignancies, including cancer. Regulation of repair pathways is critical in promoting necessary cell death. BRCA genes are tumor suppressor genes mediate several cellular process including DNA replication, transcription regulation, cell cycle checkpoints, apoptosis, chromatin structuring and homologous recombination (HR). Homologous recombination deficiency (HRD), along with PPAR inhibition, is a vulnerability that enhances the cell death pathway when the single mutations alone would permit viability. Ovarian cancer commonly possesses defects in DNA repair pathways such as HRD due to BRCA mutations or otherwise. There are three main types of ovarian cancer: epithelial (90%), germ cell (5%) and sex cord stromal cell (5%). Epithelial ovarian, being the most common, fifth leading cause of cancer-related deaths in women in the United States. Advanced ovarian cancer particularly poses challenges due to reduced therapeutic response rates from standard platinum-based chemotherapy and overall survival rates. Rucaparib has shown to induce cytotoxicity in tumor cell lines with deficiencies in BRCA1/2 and other DNA repair genes. Of all the BRCA1/2 mutations in ovarian cancer, most are due to germline mutations (18%), and approximately 7% represent somatic mutations acquired within the tumor . The indication of rucaparib as an oral monotherapy in patients with deleterious BRCA mutation (germline and/or somatic) associated advanced ovarian cancer was granted accelerated approval in 2016 for selected patients who have previously received greater than two lines of platinum-based therapy. It is currently marketed in the US under the brand name Rubraca that contains rucaparib camsylate as the active ingredient. It is indicated for:

Ovarian cancer

• for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy.

Electronically Signed by

- Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:
 - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Page	10	of	3(

Name: -

for the treatment of adult patients with a deleterious BRCA mutation (germline and/or somatic)-associated epithelial ovarian, fallopian tube, or primary peritoneal cancer who have been treated with two or more chemotherapies.
 Prostate cancer

Report No:

for the treatment of adult patients with a deleterious BRCA mutation (germline and/or somatic)-associated metastatic castrationresistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based
chemotherapy. This indication is approved under accelerated approval based on objective response rate and duration of response.
Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Talazoparib

Talazoparib was approved by the FDA for use in germline BRCA mutated, HER2 negative, locally advanced or metastatic breast cancer on October 16, 2018 under the trade name Talzenna . Talzenna was granted approval based on the results of the EMBRACA trial in which talazoparib resulted in a mean 8.6 months progression-free survival time versus physician's choice chemotherapy which resulted in 5.6 months progression-free survival.

Talazoparib is indicated for the treatment of adult aptients with deleterious or suspected deleterious germline BRCA mutated, HER2 negative locally advanced or metastatic breast cancer.

Enzalutamide

Enzalutamide is a second-generation androgen receptor inhibitor used to treat castration-resistant prostate cancer and metastatic castration-sensitive prostate cancer.

Enzalutamide is indicated for the treatment of castration-resistant prostate cancer and metastatic castration-sensitive prostate cancer (mCRPC). It is also used in combination with talazoparib for the treatment of adult patients with HRR gene-mutated mCRPC.

Niraparib

Niraparib is an orally active PARP inhibitor to treat ovarian cancer. FDA approval on March 2017. It is marketed under the brand name Zejula.

Niraparib is indicated for:

• the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to first-line platinum-based chemotherapy

• for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy

• for the treatment of adult patients with advanced ovarian, fallopian tube, or primary peritoneal cancer who have been treated with three or more prior chemotherapy regimens and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

o a deleterious or suspected deleterious BRCA mutation, or

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

<u>DrugBank</u>

DrugBank Ø

Page 11 of 30

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

_

Report No:

_

o genomic instability and who have progressed more than six months after response to the last platinum-based chemotherapy.

6. Interpretation for polymorphism variants related with chemotherapy drugs

Drug Classes	Test	Drug name	Gene	dbSNP	Patient's	Patient's Variant-Drug	Evidence
	Content				Genotype	Phenotype Annotation	Level
	Drug	5-Eu+Oxaliplatin			AG	Associated with moderate	2A
	efficacy		GSTP1	rs1695		response to treatment	
					TT	Associated with decreased	2A
		E Eu or Canacitabino	DPYD	rs2297595		risk of drug toxicity	
		5-Fu of Capecitabilie			GG	Associated with decreased	2A
			MTHFR	rs1801133		risk of drug toxicity	
		5-Fu+Leucovorin or			GG	Associated with decreased	2B
Fluoropyrimidines	Drug	Tegafur+Leucovorin	UMPS	rs1801019		risk of drug toxicity	
	toxicity				TT	Associated with decreased	1A
	-		DPYD	rs67376798		risk of drug toxicity	
		Fluoropyrimidine-based			AA	Associated with decreased	1A
		therapy	DPYD	rs55886062		risk of drug toxicity	
		.,			СС	Associated with decreased	1A
			DPYD	rs3918290		risk of drug toxicity	
					GG	Associated with increased risk	2B
	Drug	Anthracyclines	CBR3	rs1056892		of drug toxicity	
	toxicity		02/10	101000001	AG	Associated with decreased	24
Anthracyclines	conterty	Epirubicin	GSTP1	rs1695		risk of drug toxicity	273
	Drug	-	00//1	131033	AG	Associated with better	20
	officacy	Epirubicin	GSTD1	rc1695		response to treatment	20
	enicacy		05//1	131055	AC	Associated with bottor	2
	Drug efficacy	Letrozole, Anastrozole	CVD10A1	rc1616	AC	rosponso to trootmont	5
			CIFISAI	134040		Associated with paperar	2
Aromatase inhibitors		Anastrozole		***2022582		Associated with poorer	5
			ABCBI	152032582	4.0	Associated with increased view	2
	Drug	Anastrozole	4.0.004		AG	Associated with increased risk	3
	toxicity		ABCB1	rs1045642		of drug toxicity	
		Capecitabine-Based			GG	Associated with increased risk	ZA
		Chemotherapy	MTHFR	rs1801131		of drug toxicity	
		Capecitabine-Based			TT	Associated with decreased	2A
		Chemotherapy	DPYD	rs2297595		risk of drug toxicity	
		5-Fu or Capecitabine			GG	Associated with decreased	2A
Canecitabine	Drug		MTHFR	rs1801133		risk of drug toxicity	
capeentabilite	toxicity				TT	Associated with decreased	1A
			DPYD	rs67376798		risk of drug toxicity	
		Canecitabine			AA	Associated with decreased	1A
		capecitabilie	DPYD	rs55886062		risk of drug toxicity	
					CC	Associated with decreased	1A
			DPYD	rs3918290		risk of drug toxicity	
					СТ	Associated with decreased	3
		Custombombomida	XRCC1	rs25487		risk of drug toxicity	
	Drug	Cyclophosphamide			GG	Associated with decreased	2A
Calcale schemetale	toxicity		MTHFR	rs1801133		risk of drug toxicity	
cyclopnosphamide					AG	Associated with decreased	2A
		Cyclophosphamide+Epirubicin	GSTP1	rs1695		risk of drug toxicity	
	Drug			1	СТ	Associated with poorer	3
	efficacy	Cyclophosphamide	XRCC1	rs25487		response to treatment	

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Page 12 of 30

Genekor Medical S.A.

_

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

_

Report No:

					AG	Associated with moderate	2B
			SOD2	rs4880		response to treatment	
		Cyclophosphamide+Epirubicin			AG	Associated with better	2A
		-7	GSTP1	rs1695		response to treatment	
					CC	Associated with better	3
Ftoposide	Drug	Ftoposide	SLIT1	rs2784917		response to treatment	
20000000	toxicity	2000000			AG	Associated with decreased	4
			ABCB1	rs1045642		risk of drug toxicity	
					AG	Associated with decreased	3
			RRM1	rs9937		risk of drug toxicity	
Gemcitabine	Drug	Gemcitabine			AA	Associated with increased risk	4
Gementabilite	toxicity	Gerneltabilie	CDA	rs60369023		of drug toxicity	
					GG	Associated with decreased	3
			CDA	rs2072671		risk of drug toxicity	
					AC	Associated with increased risk	2B
						of neutropenia and	
	Drug		UGT1A1	rs8175347		hematologic toxicity	
Irinotecan	toxicity	Irinotecan			6TA/6TA	Associated with decreased	2A
	toxicity		UGT1A1	rs4148323		risk of drug toxicity	
					GG	Associated with decreased	2A
			C8orf34	rs1517114		risk of drug toxicity	
		Methotrexate		rs1801133	CG	Associated with increased risk	2B
			MTHFR			of drug toxicity	
	Drug				GG	Associated with decreased	3
	toxicity		MTRR	rs1801394		risk of drug toxicity	
wethotrexate					AA	Associated with decreased	2B
			ABCB1	rs1045642		risk of drug toxicity	
	Drug	Methotrexate			AG	Associated with increased risk	2A
	efficacy		ATIC	rs4673993	_	of drug toxicity	
	Drug				СТ	Associated with moderate	2B
Pemetrexed	efficacy	Pemetrexed	MTHFR	rs1801133		response to treatment	
					GG	Associated with better	3
		Cisplatin	ХРС	rs2228001		response to treatment	•
		Platinum compounds			GG	Associated with increased risk	1B
			GSTP1	rs1695		of drug toxicity	10
	Drug	Cisplatin, Platinum, Platinum			AG	Associated with increased risk	2A
	toxicity	compounds	ERCC1	rs3212986	1.0	of drug toxicity	
					AC	Associated with increased risk	2B
		Carboplatin, Cisplatin,	FRCC1	rs11615	1.0	of drug toxicity	20
Platinum-Based		Oxaliplatin, Platinum,			AG	Associated with increased risk	2B
Chemotherapy		Platinum compounds	XRCC1	rs25487	1.0	of drug toxicity	20
					СТ	Associated with decreased	2B
		Carboplatin	MTHER	rs1801133	0.	risk of drug toxicity	20
					66	Associated with poorer	24
	Drug	Platinum compounds	XRCC1	rs1799782	00	response to treatment	273
	efficacy		701001	131733762	66	Associated with poorer	ΝΔ
	cificacy	Carboplatin, Cisplatin,	ERCC1	rs11615	00	response to treatment	NA
		Oxaliplatin, Platinum,	LACCI	1311015	AG	Associated with poorer	28
		Platinum compounds	XRCC1	rs25487	70	response to treatment	20
			7.11001	1323-07	ст	Associated with poorer	2R
			ABCB1	rs1045642		response to treatment	20
	Drug	Paclitaxel	70001	1310-30-2	AG	Associated with increased rick	2
Taxanes	tovicity		5002	rc/1880	AG	of drug toxicity	3
	toxicity		3002	134000	AG	Associated with docrossed	2
		docetaxel	ERCC1	rc3212096	AG	risk of drug toxicity	3
			LUCCT	135212500	1	hisk of ulug toxicity	

Electronically Signed by - O

- Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Page 13 of 30

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

					AC	Associated with decreased	3
			ERCC1	rs11615		risk of drug toxicity	
		Tayanos			AG	Associated with decreased	3
		Taxanes	ABCB1	rs2032582		risk of drug toxicity	
	Drug efficacy	Paclitaxol+Cisplatin			CC	Associated with decreased	3
		Facilitazei+Cispiatiii	TP53	rs1042522		risk of drug toxicity	
		Paclitaval			CC	Associated with better	2B
		Pacifitaxei	ABCB1	rs2032582		response to treatment	
Vinca alkaloids	Drug	Vincristing			CC	Associated with poorer	3
	efficacy	VIICISUIE	ABCB1	rs1045642		response to treatment	

Note:

1. The level of variant-drug associations evidence is based on PharmGKB website, for more detailed information please see http://www.pharmgkb.org/page/clinAnnLevels.

Level 1A: Annotation for a variant-drug combination in a CPIC- or medical society-endorsed pharmacogenomics guideline, or implemented at a PGRN site, or in another major health system;

Level 1B: Annotation for a variant-drug combination in which the preponderance of evidence shows an association. The association must be replicated in more than one cohort with significant P-values, and, preferably with a strong effect size;

Level 2A: Annotation for a variant-drug combination that qualifies for level 2B where the variant is within a VIP (Very Important Pharmacogene) as defined by PharmGKB. The variants in level 2A are in known pharmacogenes, so functional significance is more likely;

Level 2B: Annotation for a variant-drug combination with moderate evidence of an association. The association must be replicated, but there may be some studies that do not show statistical significance, and/or the effect size may be small;

Level 3: Annotation for a variant-drug combination based on a single significant (not yet replicated) study or annotation for a variant-drug combination evaluated in multiple studies but lacking clear evidence of an association;

Level 4: Annotation based on a case report, non-significant study, or in vitro, molecular, or functional assay evidence only.

2. The variant-drug correlation relationship derived from multiple independent studies, therefore, the interpretations of the same class of drug for the tested individual may be inconsistent. The final drug instruction needs to combine with the specific clinical situation.

3. The detection results are only based on the analysis of tumor samples and lack of control, the results of some loci may be specific to tumor tissues due to factors such as loss of heterozygosity.

Name:	-	Report No:	-

7. Other Genomic findings*

*Note: In this section, damaging variants in genes without clinical actionability or without convincing evidence of cancer association are reported.

Genetic Variation:	-			
8. Variants of Uncertain Significance (VUS)				

The clinical significance of the variants listed in the below table is uncertain at this time. Until the uncertainty is resolved, these variants should not be used in clinical management decisions.

Gene	Variant	Interpretation
-	-	

Name:	-	Report No:	-

9. Germline variants

Gene	Transcript	Exon	c.HGVS	p.HGVS	Zygosity	Classification
BRCA2	NM_000059.3	EX11	c.6141delT	p.Tyr2047Ter	Heterozygosity	Pathogenic

Note:

- 1. indicates no relevant variations were detected in this test.
- 2. When detected, pathogenic or likely pathogenic variants are reported. Variants of uncertain significance or variants that are benign or likely benign are not reported.
- 3. The somatic or germline origin of the alteration identified cannot be verified due to the absence of control sample analysis (blood or saliva).
- 4. Variant classification interpretation is based on ACMG (American College of Medical Genetics and Genomics) guidelines for the interpretation of germline sequence variants (<u>PMID:25741868</u>).

10. HLA-I Polymorphism variation

Somatic HLA-I Zygosity

The anti-tumor activity of immune checkpoint inhibitor therapy is related to CD8+ T cells. The recognition of cancer cells by CD8+ T cells is achieved by HLA-I (human leukocyte antigen class I) molecules presenting tumor antigens.

HLA alleles have the characteristics of polymorphism and codominance. HLA-I loci subdivided into HLA-A, HLA-B and HLA-C. When a patient's HLA-I is homozygous at least one locus, this patient is expected to present less and less diverse tumor neoantigens to T cells compared to patients who are heterozygous at all three loci. In two cohorts, patients with heterozygous HLA-I showed longer OS than those with homozygous alleles, cohort1: HR=1.4 (1.02-1.9), P-value=0.036; cohort2: HR=1.31 (1.03- 1.7), P-value=0.028; among 32 patients with heterozygous HLA-I but at least one locus with LOH (loss of heterozygosity), patients with HLA-I LOH have a higher survival risk (P = 0.05, HR = 1.60, 95% CI 1.03-2.43), and these patients mainly with low mutation burden (P = 0.0006, HR = 3.68, 95% CI 1.64-8.23) (<u>PMID:29217585</u>).

Gene	Test Content	Result
HLA-A	Zygosity	Heterozygosity
HLA-B	Zygosity	Heterozygosity
HLA-C	Zygosity	Heterozygosity

_

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

11. Clinical Trials to consider

_

BRCA2 associated clinical trials

NCT04601441		Phase 4
Title	Study to Evaluate ctDNA of mCSPC Patients Receiving Apalutamide in Japan	
Treatment	Apalutamide	
Location	Japan	

<u>NCT04038502</u>		Phase 2
Title	Carboplatin or Olaparib for BRcA Deficient Prostate Cancer	
Treatment	Carboplatin Olaparib	
Location	United States	

<u>NCT05327010</u>	<u>)</u>	Phase 2
Title	Testing the Combination of the Anti-cancer Drugs ZEN003694 (ZEN-3694) and Talazo Advanced Solid Tumors, The ComBET Trial	parib in Patients With
Treatment	BET Bromodomain Inhibitor ZEN-3694 Biopsy Biospecimen Collection Diagnostic Ima	iging Talazoparib
Location	United States	

<u>NCT05498272</u>		Phase 2
Title	Study of Neoadjuvant PARP Inhibition Followed by Radical Prostatectomy in Patie Intermediate-Risk or High-Risk Prostate Cancer With BRCA1/2 Gene Alterations	nts With Unfavorable
Treatment	Olaparib LHRH agonist	
Location	United States	

NCT03767075		Phase 2
Title	A Modular Multi-Basket Trial to Improve Personalized Medicine in Cancer Patients (Bask	(et of Baskets)
Treatment	Atezolizumab Futibatinib Amivantamab	
Location	France, Germany, Italy, Netherlands, Spain, Sweden, United Kingdom	

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Location

United States

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:	- Report No: -	
NCT04030559	<u> </u>	Phase 2
Title	Niraparib Before Surgery in Treating Patients With High Risk Localized Prostate Can Response Defects	cer and DNA Damage
Treatment	Niraparib Niraparib Tosylate Monohydrate Radical Prostatectomy	

NCT03428802	2	Phase 2
Title	Pembrolizumab in Treating Participants With Metastatic, Recurrent or Locally Advanced Instability	d Cancer and Genomic
Treatment	Laboratory Biomarker Analysis Pembrolizumab	
Location	United States	

<u>NCT03297606</u>		Phase 2
Title	Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	
Treatment	Olaparib Dasatinib Nivolumab plus Ipilimumab Axitinib Bosutinib Crizotinib I Temsirolimus Erlotinib Trastuzumab plus Pertuzumab Vemurafenib plus Cobir Tucatinib	Palbociclib Sunitinib netinib Vismodegib
Location	Canada	

NCT05252390	2	Phase 1 Phase 2
Title	NUV-868 as Monotherapy and in Combination With Olaparib or Enzalutamide in Adult P Solid Tumors	atients With Advanced
Treatment	NUV-868 Olaparib Enzalutamide	
Location	United States	

Title A Study of ART4215 for the Treatment of Advanced or Metastatic Solid Tumors Treatment ART4215 L Talazonarib L Niraparib	<u>NCT04991480</u>
Treatment ABT4215 Talazonarib Niranarib	Title
	Treatment
Location United States, United Kingdom	Location

Title Study of AZD9574 as Monotherapy and in Combination With Anti-cancer Agents in Participants With Advan	NCT05417594	<u>L</u>	Phase 1 Phase 2
Solid Malighancies	Title	Study of AZD9574 as Monotherapy and in Combination With Anti-cancer Agents in Parti Solid Malignancies	cipants With Advanced
Treatment AZD9574 Temozolomide [11C]AZ1419 3391	Treatment	AZD9574 Temozolomide [11C]AZ1419 3391	

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Name:	- Report No: -	
Location	United States, Australia, Germany, Korea, Republic of, Spain, Sweden, United Kingdom	
NCT04890613	<u>I</u>	Phase 1
Title	Study of CX-5461 in Patients With Solid Tumours and BRCA1/2, PALB2 or Homol Deficiency (HRD) Mutation	ogous Recombination
Treatment	CX-5461	
Location	United States, Canada	
<u>NCT05694715</u>		Phase 1
Title	Combination Therapy in Cancers With Mutations in DNA Repair Genes	
Treatment	Niraparib Irinotecan	
Location	United States	
NCT04182516		Phase 1
Title	Study of NMS-03305293 in Pts With Selected Advanced/Metastatic Solid Tumors	
Treatment	NMS-03305293	
Location	United States, China, Italy	
NCT05787587		Phase 1
Title	A Study of PARG Inhibitor IDE161 in Participants With Advanced Solid Tumors	
Treatment	IDE-161	
Location	United States	

Press here for a live search of clinical trials for BRCA2

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

12. Appendix

12.a. Immune checkpoint inhibitors predictive biomarkers

Tumor Mutation Burden (TMB)

bTMB (blood-based tumor mutational burden) usually refers to the number of somatic nonsynonymous mutations or all mutations per megabase in the gene region examined by whole exome sequencing or targeted sequencing in a tumor peripheral blood sample. bTMB is derived from DNA released into blood circulation by tumor cells (circulating tumor - ctDNA). Tissue TMB (tTMB) is approved as a tumor agnostic biomarker for immunotherapy in patients with metastatic solid tumors. bTMB is positively correlated with tTMB, which can reflect the level of TMB in tumor tissues to some extent. Studies have shown that bTMB is not correlated with the expression of PD-L1 in tumor tissues (<u>PMID: 30082870</u>).

A retrospective analysis confirmed correlation between tTMB and bTMB in patients with NSCLC included in the OAK (NCT02008227, n=850) and Poplar (NCT01903993, n=287) clinical trials of Atezolizumab in second-line treatment for advanced non-small cell lung cancer. High TMB was associated with response to immunotherapy in both trials. A different study successfully correlated blood and tissue TMB results on 2000 NSCLC samples from Geneplus database. The correlation of bTMB with outcomes after front line treatment with Pembrolizumab and Pembrolizumab plus Chemotherapy was also evaluated, at a cutoff of \geq 16 mut/Mb, in 66 pts with mNSCLC. Early results suggested that bTMB may predict therapeutic outcomes after first line Pembrolizumab based therapy in mNSCLC. However, the prospective phase III BFAST trial concluded that bTMB at a cut-off of \geq 16 mut/Mb was not a predictive biomarker for clinical outcomes with atezolizumab in patients with previously untreated metastatic NSCLC, although the 18-month PFS and OS both numerically favored atezolizumab in this bTMB group (PMID: 35995953).

Evaluation of tissue- and plasma-derived TMB from the CheckMate 848 clinical trial, showed that at the prespecified cutoff of 10 mut/Mb, 15.8% and 20.7% of samples had high tTMB and bTMB, respectively; the positive (PPA), negative and overall percentage agreements between assays were 60%, 88%, and 84%, respectively. TMB correlation (Spearman's r, 0.54; P < 0.0001) and PPA (66%) were improved among 806 (79.3%) sample pairs with plasma maximum somatic allele frequency \geq 1% (https://doi.org/10.1158/1538-7445.AM2022-2139).

Plasma samples with high bTMB values are highly correspondent with tTMB, whereas bTMB low results may also be the result of low tumor burden at earlier stages of disease as well as poorly shedding tumors (PMID: 35217576). Typically, bTMB reports higher than tTMB, as reported in Drusbosky et al, who analyzed 5610 blood specimens with the 80th percentile bTMB being \geq 16 mut/Mb tissue equivalency (PMID: 35274716).

At present, there is no consensus on the application of bTMB in clinical cancer treatment.

Table S1. TMB interpretation and cut-offs.

Tumour Type	Immunotherapy agent	Study/Trial	TMB high cut-off	Type of benefit
NSCLC	Anti PD-L1	B1FIRST [1]	≥16 Muts/Mb	ORR
NSCLC	Anti PD-L1	BFAST Cohort C [2]	≥16 Muts/Mb	-
NSCLC	Anti PD-L1	MYSTIC [3]	≥20 Muts/Mb	OS
NSCLC	Anti PD-L1	OAK [4]	≥16 Muts/Mb	PFS
NSCLC	Anti PD-L1	POPLAR [4]	≥16 Muts/Mb	PFS

1. Mok, Tony & Gadgeel, S. & Kim, et al. Blood first line ready screening trial (B-F1RST) and blood first assay screening trial (BFAST) enable clinical development of novel blood-based biomarker assays for tumor mutational burden (TMB) and somatic mutations in 1L advanced or metastatic NSCLC. 2017. Annals of Oncology. 28. 10.1093/annonc/mdx380.084.] 2. Peters S, et al. Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-based tumor mutational

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Name:

Report No:

burden: primary analysis of BFAST cohort C randomized phase 3 trial. Nat Med. 2022 Sep;28(9):1831-1839. | **3**. Rizvi NA, et al. MYSTIC Investigators. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020 May 1;6(5):661-674. doi: 10.1001/jamaoncol.2020.0237. | **4**. Gandara DR, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018 Sep;24(9):1441-1448. doi: 10.1038/s41591-018-0134-3.

Microsatellite Instability (MSI)

MSI (microsatellite instability, MSI) refers to the phenomenon that the sequence of microsatellites increases or decreases. Microsatellite (MS), also called Short Tandem Repeats (STRs) or Simple Sequence Repeat (SSRs), consists of repeated sequences of 1-6 nucleotides. This report uses NGS panel detection and is based on the 1021 Panel platform. The results of MSI are divided into three types: MSI-H, which means microsatellites are highly unstable; MSS, which means microsatellites are stable; MSI-U, which means that the sample does not meet the MSI evaluation conditions (tissues or pleural fluid samples may not have passed the MSI indicator calculation quality control due to the low DNA and/or content of tumor cells).

FDA approved pembrolizumab for solid tumors with MSI-H or dMMR (highly unstable microsatellites or MMR defects) and approved for MSI-H or dMMR colorectal cancer as the first-line treatment (<u>PMID: 35680043, 33264544</u>). FDA approved nivolumab for the treatment of children or adults who have progressed after 5-FU/oxaliplatin/irinotecan treatment with MSI-H or dMMR metastatic colorectal cancer. The NCCN clinical practice guidelines for colorectal cancer indicate that pembrolizumab/nivolumab can be used for the treatment of patients with dMMR/MSI-H colorectal cancer (<u>PMID: 28734759</u>).

Name:

Report No:

12.b. Methodology

ctDNA analysis was performed using plasma-extracted cfDNA, in combination with DNA extracted from leukocytes as a control to avoid the detection of false positive results due to clonal hematopoiesis mutations. The MagMAX Cell-Free DNA Isolation Kit (Thermofischer Scientific) and the MagCore Genomic DNA Whole Blood Kit (RBC Bioscience) were used for cfDNA and genomic DNA extraction respectively. A capture based targeted next generation sequencing (NGS) analysis was performed, using the Oncology Multi-Gene Variant Assay (GenePlus) which is a qualitative test that detects variants in 1021 tumor-related genes and gene rearrangements / fusions in 38 genes. Sequencing was carried out on an MGI sequencing platform (DNBSEQ-G400). The analysis includes the entire exon regions of 312 genes, introns/promoters/fusion breakpoint regions of 38 genes and partial coding exons of 709 genes. The test also reports 30+ immune response biomarkers, including Tumor Mutational Burden (TMB) score and Microsatellite Instability (MSI) status.

Sequencing data are analyzed through bioinformatics pipeline for variant calling and interpretation using the Gene+Box data analysis and management system.

Sensitivity: Positive reference standards are tested with the assay, all corresponding mutation sites can be accurately detected, and the positive percent agreement (PPA) for all variants (SNVs, Indels, fusions and CNVs) assessed was 100%. Specificity: Negative reference standards are tested with the assay, and the negative percent agreement (NPA) of SNVs, Indels, fusions and CNVs was 100%.

Limit of Detection (LoD): The limit of detection (LoD) of this assay is listed in the table below. The LoD is based on as low as 30 ng of gDNA input for library preparation.

Variant Type	Limit of Detection
Single nucleotide variations (SNV)	VAF ≥0.5%
Insertions/deletions (Indel)	VAF ≥0.5%
Fusion (or rearrangement)	VAF ≥0.5%

Disclaimer

- 1. This test is mainly used to assist clinical decision-making and the result does not represent clinical decision.
- 2. The test should be interpreted by combining the actual patient context. The medication information provided only on the basis of genetic test results, and the actual medication should follow the physician's instructions.
- 3. The clinical trials only present partial relevant clinical recruitment trials. For more comprehensive and updated information, please refer to the website: https://clinicaltrials.gov/.
- 4. As evidence on variants and drugs evolves, previous classifications may later be modified. The interpretation of a variant is based on current available evidence.
- Sequence variants were reported using Human Genome Variation Society (HGVS) nomenclature. Classification and interpretation of variants follows guidelines of American College of Medical Genetics and Genomics (ACMG), Association of Molecular Pathology (AMP), American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP).
- Database and references used: Reference genome (GRCh37), annotation using A Locus Reference Genomic (LRG), database referencing 1000G (phaseIII-ucsc), EXAC (0.3.1), dbSNP (147), PolyPhen2/SIFT (ensdb v73), PhyloP (2013-12-06), Clinvar (2018-8) and Cosmic(V80).

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Name:

Report No:

Limitations

- 1. The test is limited to test genomic variations on DNA level and does not involve RNA level or protein level.
- 2. Limited cell free tumor DNA (ctDNA) amount could result in false negative results.
- 3. Scientific data show that not all patients carry genomic variations that are associated with targeted drug, therefore not all subjects can be matched with targeted therapies or clear resistance mechanism.
- 4. Genetic variation beyond the detection range of this test or some non-gene mutation related factors such as drug interactions may affect the clinical effects of drugs.
- 6. Fraction of base quality ≥ Q30: The proportion of base quality in sequencing data that reaches or exceeds Q30, indicating that the probability of base recognition accuracy rate exceeds 99.9%.
- 7. Every molecular test has an internal 0.5-1% chance of failure. This is due to rare molecular events and factors related to the preparation and analysis of the samples.

Name:	-	Report No:	-
-------	---	------------	---

12.d. Quality Control Results

Quality Control Index	Result	Criterion	
	Average effective sequencing depth ¹	3373	≥ 1000
Sequencing Quality Assessment	Fraction of target covered with $\ge 50x^2$	100%	≥99%
	Fraction of base quality $\ge Q30^3$	96.30%	≥80%
Overall Assessment ⁴	PASS		

Note :

- 1. Average effective sequencing depth: Average sequencing depth on target without duplicated reads.
- Fraction of target covered with ≥ 50x: The proportion of bases that sequencing depth reach or above 50x on target, this index reflecting the coverage uniformity of sequencing.
- 3. Fraction of base quality ≥ Q30: The proportion of base quality in sequencing data that reach or above Q30, that is the probability of base recognition accuracy rate exceeds 99.9%.
- 4. Overall Assessment: The quality control overall assessment results are divided into two levels: "PASS" and "RISK". TWhen the overall quality assessment result is "RISK", 94-96% of coverage was achieved in the genes analysed, hence there is a small range where clinical actionable variations could be undetected.

Genekor Medical S.A.

_

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

12.e. Genes Analyzed

_

312 genes incl	uding all exon r	egions and avail	able for detectin	ng SNV / Indel /	CNV				
ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	APC	AR	ARAF	ARID1A
ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2
AXL	B2M	BAP1	BARD1	BCL2	BCL2L1	BCOR	BLM	BMPR1A	BRAF
BRCA1	BRCA2	BRD4	BRIP1	втк	CARD11	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD274	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8
CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP
CRKL	CSF1R	CTCF	CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR1	DDR2
DICER1	DNMT3A	DOT1L	EGFR	EIF1AX	EMSY	EP300	EPAS1	EPCAM	EPHA2
EPHA3	EPHA5	EPHB1	EPHB6	ERBB2	ERBB3	ERBB4	ERCC1	ERCC3	ERCC4
ERCC5	ERG	ERRFI1	ESR1	EXT1	EXT2	EZH2	FAM123B	FAM175A	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FANCM	FAS	FAT1	FAT2
FBXW7	FGF19	FGF3	FGF4	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN
FLT1	FLT3	FLT4	FOXA1	FOXL2	FOXP1	FUBP1	GALNT12	GATA3	GNA11
GNAQ	GNAS	GRIN2A	GRM3	HDAC1	HGF	HNF1A	HOXB13	HRAS	IDH1
IDH2	IFNG	IFNGR1	IGF1R	IKBKE	IKZF1	IL7R	INPP4B	IRF2	IRS2
JAK1	JAK2	JAK3	JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	кіт
KRAS	LRP1B	MAF	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAPK1	MAX	MCL1
MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MLH3	MLL
MLL2	MLL3	MPL	MRE11A	MS4A1	MSH2	MSH3	MSH6	MST1R	MTOR
MUTYH	MYC	MYCL1	MYCN	MYD88	NBN	NCOR1	NF1	NF2	NFE2L2
NFKB1A	NKX2-1	NOTCH1	NOTCH2	NOTCH3	NPM1	NRAS	NSD1	NTHL1	NTRK1
NTRK2	NTRK3	PALB2	PARK2	PARP1	PAX5	PBRM1	PCK1	PDCD1	PDCD1LG2
PDGFRA	PDGFRB	PDK1	PIK3CA	РІКЗСВ	PIK3CG	PIK3R1	PIK3R2	PMS1	PMS2
POLD1	POLE	POT1	PPP2R1A	PRDM1	PRKAR1A	PTCH1	PTCH2	PTEN	PTPN11
PTPRD	RAC1	RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1
RARA	RB1	RBM10	RECQL	RECQL4	RET	RHOA	RICTOR	RINT1	RNF43
ROS1	RPTOR	RUNX1	SDHA	SDHAF2	SDHB	SDHC	SDHD	SERPINB3	SERPINB4
SETD2	SF3B1	SLX4	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1
SOX2	SOX9	SPOP	SRC	STAG2	STAT3	STK11	SUFU	SYK	ТВХЗ
TCF7L2	TERC	TET2	TGFBR2	TMEM127	TMPRSS2	TNFAIP3	TNFRSF14	TOP1	TOP2A
TP53	TSC1	TSC2	TSHR	U2AF1	VEGFA	VHL	WRN	WT1	XPO1
XRCC2	ZMAT3								

Page 24 of 30

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

_

Report No:

_

38 genes including specific intron, promoter and fusion breakpoint regions and available for detecting gene rearrangement or fusion											
ALK	BCL2L11	BRAF	BRCA1	BRD4	CD74	EGFR	EML4	ERG	ETV6		
EZR	FGFR1	FGFR2	FGFR3	KIF5B	КІТ	MAML2	MET	MSH2	MYC		
MYCL1	NCOA4	NOTCH2	NTRK1	NTRK2	NTRK3	PDGFRA	RAF1	RET	ROS1		
RSPO2	SDC4	SLC34A2	TERT	TFE3	TMPRSS2	ТРМ3	PMS2				
709 genes including partial exon regions and available for detecting SNV / Indel											
ABCA13	ABCB1	ABCC1	ABCC11	ABCC2	ABCG2	ABL2	ACACA	ACIN1	АСТВ		
ACTG1	ACTG2	ACVR2A	ACVRL1	ADAM29	ADAMTS5	ADCY1	AFF1	AFF2	AFF3		
AHNAK	AKAP9	ALB	AMOT	ANGPT1	ANK3	ANKRD11	ANKRD30A	ANKRD30B	APEX1		
APOBEC3B	ARAP3	ARFGEF1	ARFGEF2	ARHGAP29	ARHGAP35	ARID4B	ARID5B	ARNT	ASCL4		
ASH1L	ASMTL	ASPM	ASTN1	ASXL2	ATIC	ATP11B	ATP12A	ATP1A1	ATP2B3		
BAZ2B	BBC3	BBS9	BCAS1	BCL10	BCL11A	BCL11B	BCL2A1	BCL2L11	BCL3		
BCL6	BCL9	BCORL1	BCR	BIRC3	BMPR2	BNC2	BPTF	BRD2	BRD3		
BRSK1	BRWD1	BTLA	BUB1	C15orf23	C15orf55	C1QA	C1S	C3orf70	C7orf53		
C8orf34	CACNA1E	CADM2	CALR	CAMTA1	CASP1	CASQ2	CBLB	CBR1	CBR3		
CCDC168	CCNA1	CCNB3	ССТ3	CCT5	ССТ6В	CD22	CD33	CD5L	CD74		
CDA	CDH11	CDH18	CDH23	CDK13	CHD1	CHD1L	CHD4	CHD6	CHD8		
CHD9	CHFR	CHI3L1	CHN1	CIITA	CLDN18	CLP1	CLSPN	CLTC	CNOT3		
CNOT4	CNTN1	CNTN5	CNTNAP1	CNTNAP5	COL1A1	COL2A1	COL5A1	COL5A2	COL5A3		
COPS2	CPS1	CRIPAK	CRLF2	CRNKL1	CRTC1	CSF1	CSF3R	CSMD1	CSMD3		
CSNK1A1	CSNK1G3	CTLA4	CTNNA2	CTNND1	CUX1	CXCR4	СҮВА	CYP19A1	CYP1A1		
CYP1B1	CYP2A13	CYP2C8	CYP2D6	CYP3A4	CYP3A5	DCC	DDX3X	DDX5	DEK		
DHX35	DHX9	DIAPH1	DIS3L2	DLC1	DMD	DNAH6	DNAJB1	DNM2	DNMT1		
DNMT3B	DOCK2	DOCK7	DPYD	DRGX	DTX1	DUSP22	DYSF	E2F3	EBF1		
ECT2L	EED	EEF1A1	EGFL7	EGR3	EIF2AK3	EIF2C3	EIF3A	EIF4A2	EIF4G3		
ELAC2	ELF1	ELF3	ELMO1	ELN	EME2	EMID2	EML4	EPC1	EPHA1		
EPHA4	EPHA7	EPHB2	EPHB4	EPOR	EPPK1	EPS15	ERBB2IP	ERCC2	ESR2		
ETS1	ETV1	ETV5	ETV6	EWSR1	EZR	F8	FAM131B	FAM135B	FAM157B		
FAM46C	FAM5C	FAP	FASLG	FAT3	FAT4	FCGR1A	FCGR2A	FCGR2B	FCGR3A		
FCRL4	FGF10	FGF12	FGF14	FGF23	FGF6	FLG	FLI1	FLNC	FMN2		
FN1	FNDC4	FOXA2	FOXO1	FOXO3	FOXQ1	FRMPD4	FUS	FXR1	FYN		
FZD1	G3BP1	G3BP2	GAB2	GABRA6	GATA1	GATA2	GFRAL	GIGYF1	GKN2		
GLB1L3	GLI1	GLI2	GLI3	GMPS	GNA13	GNG2	GPC3	GPR124	GPS2		

Electronically Signed by

- Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Name:

Page 26 of 30

PRECISION INDIVIDUALIZED MEDICINE DX

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

					•				
GPX1	GRB7	GSK3B	GSTM5	GSTP1	GUSB	H3F3A	H3F3B	H3F3C	HCLS1
HCN1	HDAC4	HDAC9	HECW1	HEY1	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG
HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BD	HIST1H2BJ	HIST1H2BK	HIST1H2BO	HIST1H3B	HIST1H3C	HIST1H3D
HIST1H3F	HIST1H3G	HIST1H3H	HIST1H3I	HIST1H4I	HIST3H3	HLA-A	HLA-B	HLA-C	HLF
HMCN1	HNF1B	HNRPDL	HOXA11	HOXA13	HOXA3	HOXA9	HOXC13	HOXD11	HOXD13
HSD3B1	HSP90AA1	HSP90AB1	HSPA8	HSPD1	HSPH1	ICK	ICOSLG	ID3	IFITM3
IGF1	IGF2	IGF2R	IGLL5	IKZF2	IKZF3	IL10	IL1RAPL1	IL21R	IL6
IL6ST	IMPG1	ING1	INHBA	INPP4A	INPPL1	INSR	IRF4	IRF6	IRS1
ITGB3	ІТК	ITSN1	JARID2	KALRN	KAT6A	КАТ6В	KCNJ5	KCNQ2	KDM2B
KEL	KIF5B	KLF4	KLHL6	KLK1	KRTAP5-5	L3MBTL1	LAMA2	LATS1	LATS2
LCP1	LEF1	LGALS8	LIFR	LPHN2	LPP	LRP2	LRP4	LRP5	LRP6
LRRC7	LRRK2	LYN	LZTS1	MACF1	MAD1L1	MAGI2	MAML2	MAML3	MAP3K13
МАРКЗ	MCC	MCM3	MDC1	MECOM	MEF2C	MGA	MIB1	MIOS	MKL1
MLL4	MLLT3	MMP11	MMP2	MN1	MNDA	MNX1	MSH4	MSN	MSR1
MTHFR	MTRR	MUC5B	MYH11	MYH14	MYH9	MYO3A	MYOD1	NAP1L1	NAV3
NCAM2	NCF2	NCF4	NCK1	NCOA3	NCOA4	NCOR2	NCSTN	NDUFA13	NFATC4
NFE2L3	NKX3-1	NLRC3	NOD1	NOS3	NOTCH4	NQ01	NR1I2	NR2F2	NR4A2
NRG1	NRP2	NRXN1	NTM	NUMA1	NUP107	NUP210	NUP93	NUP98	OBSCN
OGDH	OMD	OPCML	OR11G2	OR2T4	OR4A15	OR4C6	OR5L2	OR6F1	P2RY8
P4HB	PABPC1	PABPC3	PAG1	PAK1	РАКЗ	PASK	PAX3	PAX7	РС
PCDH18	PCSK6	PCSK7	PDCD11	PDE4DIP	PDGFB	PDILT	PER1	PGR	PHF1
PHF6	PIK3C2A	PIK3C2B	PIK3C2G	РІКЗСЗ	PIM1	PKD1L2	PKHD1	PLAG1	PLCB1
PLCG1	PLCG2	PLK1	PLXNA1	PLXNB2	PNRC1	POLQ	POM121	POM121L12	POU2AF1
PPM1D	PPP1R17	PPP6C	PRDM16	PREX2	PRF1	PRKAA1	PRKCB	PRKCI	PRKDC
PRRX1	PRX	PSG2	PSIP1	PSMB1	PSMB5	PTGS1	PTGS2	PTPN13	PTPN2
PTPRB	PTPRK	PTPRO	PTPRS	PTPRT	PTPRU	RAB35	RAC2	RAD21	RAD54B
RANBP2	RASA1	RASGRP1	RBL1	REL	RELN	RFC1	RGS3	RHEB	RHOH
RHOT1	RIT1	RNASEL	ROBO1	ROBO2	ROBO3	ROCK1	RPGR	RPS6KB1	RPS6KB2
RSPO2	RSPO3	RUNX1T1	RUNX2	RXRA	RYR1	RYR2	SBDS	SCUBE2	SDC4
SEC31A	SEMA3A	SEMA3E	SEMA6A	SERPINA7	SETBP1	SETDB1	SF1	SF3A1	SFPQ
SGCZ	SGK1	SH2B3	SH2D1A	SH3PXD2A	SHH	SI	SIN3A	SLC16A1	SLC1A2
SLC22A16	SLC22A18	SLC22A2	SLC22A3	SLC34A2	SLCO1B3	SLIT1	SLIT2	SMARCD1	SMARCE1
SMC1A	SMC1B	SNCAIP	SNTG1	SNX29	SOD2	SOS1	SOX10	SOX17	SPEN
SPRR3	SPSB4	SPTA1	SRD5A2	SRGAP1	SRGAP3	SRSF2	SRSF7	STAG1	STAT1
SUCLG1	SUCLG2	SULT1A1	SUZ12	SVEP1	SYNCRIP	SYNE1	TAF1	TAF15	TAF1L
TAL1	TBL1XR1	TBX15	TBX22	TCEB1	TCF12	TCF3	TCF4	TCL1A	TEC

Report No:

_

Electronically Signed by

by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA:

- George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA: Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited

under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

Genekor Medical S.A.

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:	- Report No: -								
TENM3	TERT	TET1	TFDP1	TFDP2	TFE3	TGFBR1	THBS2	TJP1	TLE1
TLL2	TLR4	TLX3	TMEM132D	TNFSF11	TNN	TP53BP1	TP63	ТР73	TPM3
TPR	TRAF2	TRAF7	TRIM24	TRIM58	TRIO	TRPC5	TRRAP	TSHZ2	TSHZ3
TTF1	TUBA3C	TUBB3	TUSC3	TXNIP	TYMS	TYR	UBE2D2	UBR5	UGT1A1
UMPS	UPF3B	USH2A	USP6	USP8	VEZF1	VIM	VTCN1	WASF3	WDR90
WDTC1	WHSC1	WHSC1L1	WIPF1	WNK1	WNT5A	WSCD2	WWOX	WWP1	WWP2
XIAP	ХРС	XRCC1	XRCC3	YAP1	YY1AP1	ZBTB16	ZC3H11A	ZFHX3	ZFP36L1
ZFP36L2	ZFPM2	ZIC3	ZNF217	ZNF384	ZNF521	ZNF638	ZNF750	ZNF804B	

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

12.f. Levels of Evidence for Genomic Biomarkers

Figure 1. Joint consensus recommendation of AMP, ACMG, ASCO and CAP for reporting genetic variants in cancer. [1-2]

1. Leichsenring J, Horak P, Kreutzfeldt S, et al. Int J Cancer. 2019 Dec 1;145(11):2996-3010.

2. Li MM, Datto M, Duncavage EJ, et al. J Mol Diagn. 2017 Jan;19(1):4-23.

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA: Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited

Name:

Report No:

References

- 1 Zhang W, Wang R, Fang H, Ma X, Li D, Liu T, Chen Z, Wang K, Hao S, Yu Z, Chang Z, Na C, Wang Y, Bai J, Zhang Y, Chen F, Li M, Chen C, Wei L, Li J, Chang X, Qu S, Yang L, Huang J. Influence of low tumor content on tumor mutational burden estimation by whole-exome sequencing and targeted panel sequencing. Clin Transl Med. 2021 May;11(5):e415. doi: 10.1002/ctm2.415. PMID: 34047470; PMCID: PMC8102856.
- 2 Zhang Y, Yao Y, Xu Y, Li L, Gong Y, Zhang K, Zhang M, Guan Y, Chang L, Xia X, Li L, Jia S, Zeng Q. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat Commun. 2021 Jan 4;12(1):11. doi: 10.1038/s41467-020-20162-8. Erratum in: Nat Commun. 2021 Feb 10;12(1):1048. PMID: 33397889; PMCID: PMC7782482.
- 1 Zhang W, Wang R, Fang H, Ma X, Li D, Liu T, Chen Z, Wang K, Hao S, Yu Z, Chang Z, Na C, Wang Y, Bai J, Zhang Y, Chen F, Li M, Chen C, Wei L, Li J, Chang X, Qu S, Yang L, Huang J. Influence of low tumor content on tumor mutational burden estimation by whole-exome sequencing and targeted panel sequencing. Clin Transl Med. 2021 May;11(5):e415. doi: 10.1002/ctm2.415. PMID: 34047470; PMCID: PMC8102856.
- 2 Zhang Y, Yao Y, Xu Y, Li L, Gong Y, Zhang K, Zhang M, Guan Y, Chang L, Xia X, Li L, Jia S, Zeng Q. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat Commun. 2021 Jan 4;12(1):11. doi: 10.1038/s41467-020-20162-8. Erratum in: Nat Commun. 2021 Feb 10;12(1):1048. PMID: 33397889; PMCID: PMC7782482.
- 3 Stenzinger A, Allen JD, Maas J, Stewart MD, Merino DM, Wempe MM, Dietel M. Tumor mutational burden standardization initiatives: Recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes Chromosomes Cancer. 2019 Aug;58(8):578-588. doi: 10.1002/gcc.22733. (PMID: 30664300)
- 4 Hirotsu Y, Nagakubo Y, Amemiya K, Oyama T, Mochizuki H, Omata M. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin Chim Acta. 2020 Mar;502:207-213. doi: 10.1016/j.cca.2019.11.002. (PMID: 31730810)
- de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, Thiery-Vuillemin A, Twardowski P, Mehra N, Goessl C, Kang J, Burgents J, Wu W, Kohlmann A, Adelman CA, Hussain M. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2020 May 28;382(22):2091-2102. doi: 10.1056/NEJMoa1911440. Epub 2020 Apr 28. PMID: 32343890;
- 6. PUBMED:
- 7. Zhao W et al. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 2017 Oct 19;550(7676):360-365. doi: 10.1038/nature24060. (PMID: 28976962)
- Wang Z et al. Association of Germline BRCA2 Mutations With the Risk of Pediatric or Adolescent Non-Hodgkin Lymphoma. JAMA Oncol. 2019 Sep 1;5(9):1362-1364. doi: 10.1001/jamaoncol.2019.2203. (PMID: 31343663)
- 9. Roy R et al. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011 Dec 23;12(1):68-78. doi: 10.1038/nrc3181. (PMID: 22193408)
- 10. Moynahan ME et al. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001 Feb;7(2):263-72. doi: 10.1016/s1097-2765(01)00174-5. (PMID: 11239455)
- 11. Esashi F et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005 Mar 31;434(7033):598-604. doi: 10.1038/nature03404. (PMID: 15800615)
- Howlett NG et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002 Jul 26;297(5581):606-9. doi: 10.1126/science.1073834. (PMID: 12065746)106. https://civic.genome.wustl.edu/
- 13. http://cancer.sanger.ac.uk/
- 14. https://www.clinicaltrials.gov
- 15. http://atlasgeneticsoncology.org
- 16. https://www.oncokb.org/
- 17. https://www.mycancergenome.org/

Electronically Signed by - Chrysiida Florou-Chatzigiannidou, M.Sc., Molecular Biologist, AMKA: - George Nasioulas, PhD Molecular Biologist, Scientific Director, AMKA:

Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

Name:

Report No:

_

18. https://pmkb.org//

_