

Multigene panel testing results for hereditary breast cancer in 1325 individuals: implications for

Genekor

Tsaousis G.^{1*}, Tsoulos N.¹, Papadopoulou E.¹, Agiannitopoulos K.¹, Pepe G.¹, Diamantopoulos C.⁴, Papazisis K.⁵, Venizelos V.⁶, Xepapadakis G.⁷, Banu E.⁸, Eniu D.T.⁹, Stanculeanu D.¹⁰, Ungureanu A.¹¹, Tansan S.¹², Tekinel M.¹³, Yalcin S.¹⁴, Nasioulas G.¹

Committed to Biotechnological Innovation

¹GeneKor Medical S.A, Athens, Greece, ²Theagenio Anticancer Hospital, Thessaloniki, Greece, ³Oncology Department, Athens, Greece, ⁵Euromedica General Clinic of Thessaloniki, Thessaloniki, Greece, ⁶Metropolitan Hospital, Athens, Greece, ⁷IASO, General Maternity and Gynecology Clinic, Athens, Greece, ⁸Spitalul Sfantul Constantin Brasov, Brasov, Romania, ¹⁰Institutul Oncologic Bucuresti, Bucuresti, Romania, ¹¹Amethyst Radiotherapy Cluj-Napoca, Cluj, Romania, ¹⁵Tansan Oncology, Instabul, Turkey, ¹⁶Surgery, Private Practice, Fulya Sisli, Turkey, ¹⁷Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey

Background

The application of the Next Generation Sequencing (NGS) technology has facilitated multigene panel testing for hereditary breast cancer (BC) in clinical practice. We performed a retrospective analysis of individuals referred for testing in our lab aiming to investigate the contribution of included genes and evaluate current genetic testing guidelines in BC.

Methods

In total, 1141 BC patients and 184 unaffected individuals with family history (FH) of BC were referred from physicians for testing using a multigene panel. Genomic DNA was enriched for targeted regions of 33 genes panel (APC, BMPR1A, BRCA1, BRCA2, CDH1, CDK4, CDKN2A, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, PTEN, RET, SMAD4, STK11, TP53, EPCAM, MEN1, VHL, ATM, BRIP1, CHEK2, NBN, RAD51C, RAD51D, BARD1, CHEK1, MRE11 (MRE11A), NF1, RAD50, RAD51B) and sequencing was carried out using the Illumina NGS technology. The presence of large genomic rearrangements (LGRs) was investigated computationally and by Multiplex Ligation-dependent Probe Amplification (MLPA). All clinically significant observations were confirmed by orthogonal technologies.

Results

Table 1. Demographic and clinical characteristics for all tested individuals.			
Demographic	No.	%	
Total individuals	1325	100	
Female	1316	99.3	
Male	9	0.7	
Age at diagnosis (years)			
Mean ± SD	44.9 ± 11.1		
Median	43		
Range	22-86		
Age at testing (years)			
Mean ± SD	47.0 ± 11.2		
Median	45		
Range	23-88		
Ethnicity			
Greek	754	56.9	
Romanian	384	29.0	
Turkish	187	14.1	
Clinical status			
Affected	1141	86.1	
Unaffected	184	13.9	

A pathogenic variant (PV) was identified in 22% (291/1325) of analyzed individuals and in specific in 23.2% of BC patients and 14.1% of unaffected individuals (P = 0.006). Among individuals with PVs, 49.1% were located in the BRCA1/2 genes whereas 8.6%, 22.7% and **19.6%** occurred in other **high**, **moderate and low risk** genes respectively. Notably, 21 of the 291 positive individuals (7.2%) carried clinically significant variants in two different genes and 6.5% had a large genomic rearrangement (LGR)

Results

Category	Individuals	% \
Total individuals	1325	
Greek	754	
Romanian	384	
Turkish	187	
Affected individuals	1141	
Unaffected individuals	184	

Figure 1. A. Panel testing outcomes for 1325 individuals with personal and/or family history of Breast cancer, B. Percentage of VUS identified stratified by gene risk category, C. Percentages of gene categories in individuals with positive findings, D. Percentages of genes in individuals with positive findings.,* genes with LGRs.

gene selection and considerations for guidelines